
Homework 3 Data Struct. and {Abstractions, OOP} (Term I/2024–25)

built on 2024/10/13 at 20:52:53 due: fri oct 18 @ 11:59pm

This assignment is aimed at giving you practice on working with larger programs using object-
oriented techniques, including cohesion/coupling considerations and use of interfaces, generics, and
higher-order functions. You will implement a few Java programs, test them thoroughly, and hand them
in. Additionally, you will practice proving correctness; your writeup will go into a PDF file. There is a
starter package, which you must download to begin working on this assignment.

Typesetting Requirements. For written questions, you must properly typeset your answer, produce a
PDF file called hw3.pdf, and add it to the zip file that you will upload to Canvas. No other format will
be accepted.

Our policy on (gen)AI Usage for this assignment: Use of generative AI (genAI), including AI-assisted
code completion, is prohibited. You must write every element of the code yourself.

Collaboration

We interpret collaboration very liberally. You may work with other students. However, each student
must write up and hand in his or her assignment separately. Let us repeat: You need to write your
own code. You must not look at or copy someone else’s code. You need to write up answers to written
problems individually. The fact that you can recreate the solution from memory will be taken as proof
that you actually understood it, and you may actually be interviewed about your answers.

Logistics: The Starter Package and Handing In

We’ve created a starter zip file for you to get
started with this assignment. It is available for
download from the course website. When un-
zipped, the starter file at the top level contains two
folders, each corresponding to a task in this assign-
ment. For every task, we’ve set up Gradle for you,
so each of the task folder has a build.gradle, as
well as other Gradle-related files.

In your IDE (e.g., IntelliJ), you will want to im-
port them as separate projects, one for each task.
The use of Gradle is highly encouraged as this will
allow for easy JUnit testing, plus this will be how
we’re going to run your code. This means you’re cre-
ating each project from existing source and point
your IDE to build.gradle—not just the folder.

Top Level
deque-palindrome

build.gradle

〈other files for deque etc.〉
zuul

build.gradle

〈other files for zuul〉

What to Hand In?

• You will hand in one file (a3.zip) to Canvas. This file contains all of your code. Make sure to keep
the folder structure in the same as in the starter pack.

• To avoid huge submissions full of junk, you will run the clean task in Gradle for each task. This can
be done either using the Gradle panel in your IDE or on the command line via gradlew clean.

If you do it right, the size of zip your file should be less than 1MB.

• At the top level of your zip file, you’ll include hw3.pdf, which has your answers for written
questions.

Homework 3 Data Struct.

Task 1: Deque and Generalized Palindromes (18 points)

You will extend one of your Deque implementations from the previous assignment to conform to an
interface and use it to solve “real-world” problems. When you download the starter package, the folder
for this problem contains the following files:

• CharacterComparator.java— an interface for comparing characters.

• TestPalindrome.java— a class containing JUnit tests for Palindrome.

• TestOffByOne.java— a class containing JUnit tests for OffByOne.

IMPORTANT: In the starter files, the JUnit test files were commented out because they depend on your
implementation of certain classes and methods. Throughout this task, you’ll be asked to uncomment
the test files to activate them as you go along.

We are also providing the following empty files for you to save your work:

Deque.java Palindrome.java OffByOne.java OffByN.java

Subtask I: Deque Interface

The first subtask is mechanical; it will help solidify our understanding of interfaces.

In this subtask, you will create an interface in a file named Deque.java that contains all of the
methods that appear in both ArrayDeque and LinkedListDeque. See the Deque API section from the
previous assignment.

Now that you have defined the interface, there are 2 more to-do items:

1. Modify your LinkedListDeque and/or ArrayDeque so that they implement the Deque interface.
This means adding implements Deque<T> to the line declaring the class, where T is the name of
your type parameter.

2. Add @Override tags to each method that overrides a Dequemethod.

NOTE: If you did not have a working Deque from the previous assignment, create a file called

LinkedListDeque.java

and put in the following code:

public class LinkedListDeque<T> extends LinkedList<T> implements Deque<T> {}

This black magic will give you an implementation of a Deque, based on Java’s built-in LinkedList.

Subtask II: From A Word To A Deque

This subtask involves programming inside Palindrome.java. Write a method with the following
signature:

public Deque<Character> wordToDeque(String word)

where Deque refers to the interface you have just created in the previous task.

Given a String, the method wordToDeque should return a Dequewhere the characters appear in
the same order as in the given string. For instance, if the word is “meow”, then the Deque you return
should have “m” at the front, followed by “e”, and so on.

ATTENTION: This is a good time to uncomment the TestPalindrome test file. You will be asked to
write more tests soon. For now, the file contains a simple test for your wordToDeque implementation.

2

Homework 3 Data Struct.

Subtask III: Is This A Palindrome?

Inside Palindrome.java, write a method

public boolean isPalindrome(String word)

The isPalindrome method should return true if the given word is a palindrome, and false
otherwise. As you already know, a palindrome is defined to be a word that is the same whether it is
read left-to-right or right-toleft. For example, “a”, “racecar”, and “noon” are all palindromes. But “horse”
and “aaab” are not. You might also notice that any word of length 1 or 0 is always a palindrome. Your
function treats the input as case sensitive, so we treat “A” and “a” as different.

Extra Requirements. You must use a Deque in implementing isPalindrome. This means using
wordToDeque to convert the given string into a Deque. After that, it should be obvious how to read from
the front and the back of a Deque and compare them. You really should not be using the getmethod of
Deque; it will just make things unnecessarily complicated

Write Tests. The final part of this subtask involves writing JUnit tests for your isPalindromemethod.
Add a few tests to TestPalindrome to make sure your implementation of isPalindrome works cor-
rectly.

Subtask IV: Generalizing Palindrome

The ultimate goal of this subtask is to implement a method

public boolean isPalindrome(String word, CharacterComparator cc)

inside the Palindrome class. The method will return true if the word is a palindrome according to
the character comparison test provided by the CharacterComparator passed in as cc. To compare
whether characters x and y are equal, instead of comparing them with x == y as usual, we say that
x and y are equal if the given CharacterComparator says they are equal. A character comparator is
defined as:

public interface CharacterComparator {
/** Returns true if characters are equal by the rules of the

implementing class. */
public boolean equalChars(char x, char y);

}

Here are all the steps required of you for this subtask:

1. Create a class calledOffByOne, which implementsCharacterComparator such thatequalChars
returns true for characters that are different by exactly one. For example:

OffByOne obo = new OffByOne();
obo.equalChars('a', 'b'); // ==> true
obo.equalChars('r', 'q'); // ==> true
obo.equalChars('a', 'e'); // ==> false
obo.equalChars('z', 'a'); // ==> false
obo.equalChars('a', 'a'); // ==> false

Tips: Char values in Java are really just numbers. For example, 'a' is actually just another way of
writing 97, and 'b' is another way of writing 98.

2. Uncomment the test file TestOffByOne. Write plenty of tests in TestOffByOne to make sure
your implementation is correct.

3

Homework 3 Data Struct.

3. Write the new isPalindromemethod. For this part, to allow for odd-length palindromes, do not
check the middle character for equality with itself. So “flake” is an off-by-1 palindrome,even
though the letter a is not one character off from itself. This is consistent with our earlier
isPalindromemethod, any zero or 1 character word is always a palindrome.

4. Add plenty of your own tests for isPalindrome. They should go into TestPalindrome.java.

Subtask V: Off by N

Finally, you will implement a class OffByN, which should implement the CharacterComparator inter-
face, as well as a constructor that takes an integer. Hence, the public methods and constructors of this
class are:

public OffByN(int N)
public boolean equalChars(char x, char y)

The OffByN constructor should create an object whose equalCharsmethod return true if and only if
the characters are off by N. For example:

OffByN offBy5 = new OffByN(5);
offBy5.equalChars('a', 'f'); // ==> true
offBy5.equalChars('f', 'a'); // ==> true
offBy5.equalChars('f', 'h'); // ==> false

Writing Tests. It’s always a good habit to write tests. Although you aren’t required to hand in the tests
for OffByN, we recommend that you write plenty of good tests for your own benefits. A natural place to
do so would be in a file TestOffByN.java that you will create.

Task 2: Zuul (12 points)

World-of-zuul is a simple, rudimentary implementation of a text-based adventure game, designed by
David Barnes and Michael Kölling to illustrate a few concepts related to OO class design. The original
design, as you will see, is intentionally horrifyingly bad.

You can find the starter code in the starter package downloadable from the course website. Your
goal in this task is to fix the design and make some nontrivial extensions in the end.

Subtask I: Read The Code. Code reading is an important skill that requires practice. You first task here
is to read some of the existing code and try to understand what it does. By the end, you will probably
understand most of it. To start working on this task, try to skim through much of the codebase. Make
note of where things are as you go along.

Subtask II: Understand Good Design and Refactoring. You will begin by watching the following
YouTube videos, which walk you through the process of “upgrading” the design of Zuul through refac-
toring, as well as teaching a Java construct known as enum:

• https://www.youtube.com/watch?v=chaE5EvdfZQ

• https://www.youtube.com/watch?v=n_hpbJlZuNc

To recap the lecture, we spoke about coupling and cohesion. Coupling is the about the degree of
dependencies between separate units of a program. If two classes depend closely on many details of
each other, they are tightly coupled. We should aim for loose coupling: classes do not depend (too
much) on the details of other classes. Encapsulation is a way to reduce coupling.

4

https://www.youtube.com/watch?v=chaE5EvdfZQ
https://www.youtube.com/watch?v=n_hpbJlZuNc

Homework 3 Data Struct.

Cohesion is about how many and how diverse a single unit (e.g., a method or a class) is responsible.
If a programming unit is responsible for one logical task, it has high cohesion. We should aim for high
cohesion. In concrete terms, this means: a class should represent just one and only one well-defined
entity, and a method should be responsible for one and only one well-defined task.

When we spot significant code duplication, it is a strong indicator of bad design; it is usually a
symptom of low cohesion (the opposite of what we want). Refactoring is often the cure.

Subtask III: Make Small Extensions. As a little exercise to get warmed up, make some changes to
the code. There is nothing to hand in for this subtask. But this will help you navigate this codebase.
Example changes you can make:

• change the name of a location to something different.

• change the exits—pick a room that currently is to the west of another room and put it to the north

• add a room (or two or three, ...)

Subtask IV: Refactor for Good Design. Now that you’re familiar with the code and you’ve studied
some design principles, you will refactor the Zuul code so that it observes good design principles and
follows best practices you have just learned.

Here are some glaring things, among others, that you really should fix:

• In the Game class, printWelcome and goRoom contains a big chunk of repeated code. The root
cause seems to be that each of these methods aims to do multiple things. Improve the code
by writing a separate, more cohesive method whose only task is to print information about the
current location—and make them call it.

• The Game class makes (very) heavy use of the exit info from the Room class. These public member
variables are nasty. Get rid of them. While you’re at it, streamline it using a HashMap. Ideally,
making changes local to the Room class should affect no other classes (loose coupling). But this is
not the case here. Removing the exit variables, the code won’t even compile. The classes are really
tightly coupled. Aim to reduce coupling by making sure encapsulation works properly.

• setExits has the knowledge about possible exit directions baked into it. Reduce this coupling by
instead writing setExit(String direction, Room neighbor).

• When you see a wall of ifs repeated over and over, that should cause you to question whether
they can be combined or eliminated.

• Remember the enum video you just watched?

Subtask V: More Functionality. You’ll extend the program to support all of the following:

1. Add two more directions “up” and “down”. Be sure to test it by adding a few rooms that use these
directions.

2. Implement a command “look”. This will be in addition to the existing commands such as “go ...”
and “quit”. The “look” command will print the possible exits in your current location (i.e., looking
around the room), similar to what you would display when you enter the room using the “go”
command. To get an idea for what “look” does, suppose you’re in the campus pub, the command
will display:

You are in the campus pub
Exits: east

5

Homework 3 Data Struct.

3. Implement a command “back” that takes you back to the last room you were in.

4. Add a special kind of room: a magic transporter room where every time you enter it you are
transported to a random room in your game. How would you represent such a room?

Expectations: This task is open-ended and will be graded with this in mind. Our aim for this task is to
get you thinking about good class design (by fixing a bad one and extending it to do wonderful things).
To this end, the code you’re submitting must be professionally written (comments and indentation!)
and will be graded for

• correctness

• good object-oriented design

• appropriate use of language constructs

• style (commenting, indentation, etc.)

Task 3: Loops & Numerical Computation (7 points)

For this task, save your work in hw3.pdf

Consider the Java code below. We have already fleshed out a loop invariant for you. Your task is to
fill in the missing Hoare logic justifications so that we have a proof that mult returns the product of x
and y. You may be inspired by worked examples from class.

// precondition: x >= 0 && y >= 0;
int mult(int x, int y) {

int k = x, n = y, res = 0;
while (k != 0) { // @loop_invariant x * y == k * n + res;

if (k%2 == 1) res = res + n;
k /= 2;
n *= 2;

}
return res;

}
// post-condition: returns x * y

Task 4: Looping an Array (7 points)

For this task, save your work in hw3.pdf

The Java code below was written to find the last index that x appears in the array A. If x doesn’t
appear in A, then the function returns −1.

int find(int[] A, int x) {
int n = A.length, i = n - 1;
while (i >= 0) {

if (A[i] == x)
return i;

i -= 1;
}
return -1;

}

6

Homework 3 Data Struct.

Your task is as follows:

1. Write a precondition and a post-condition for find. Your conditions should be in sync with the
invariants and other justification steps you will also make about the code. At the very least, the
post-condition should allow us to say that find does find the last index of x as specified above.

2. Specify a loop invariant for the loop that find uses.

3. Fill in the missing Hoare logic justifications so that we have a complete proof that given the
precondition, the post-condition holds, thereby findmeets the specification.

7

	Deque and Generalized Palindromes (18 points)
	Subtask I: Deque Interface
	Subtask II: From A Word To A Deque
	Subtask III: Is This A Palindrome?
	Subtask IV: Generalizing Palindrome
	Subtask V: Off by N

	Zuul (12 points)
	Loops & Numerical Computation (7 points)
	Looping an Array (7 points)

