
Homework 2 Data Struct. and {Abstractions, OOP} (Term I/2024–25)

built on 2024/09/25 at 21:43:55 due: wed oct 09 @ 11:59pm

This assignment will give you practice with class design, references, and object-oriented program-
ming, as well as thinking about the code’s performance. You will implement a few Java programs, test
them thoroughly, and hand them in. Additionally, you will do some math, write it up, and hand in a PDF.
There is a starter package, which you must download to begin working on this assignment.

For each task, write helper functions as you see fit. Strive to write code that promotes clarity.

Typesetting Requirements. For written questions, you must properly typeset your answer, produce a
PDF file called hw2.pdf, and add it to the zip file that you will upload to Canvas. No other format will
be accepted. To typeset your homework, apart from Microsoft Word, there are LibreOffice and LaTeX,
which we recommend. Note that a scan of your handwritten solution will not be accepted. You can find
helpful resources about how to typeset your work on the course website.

Our policy on (gen)AI Usage for this assignment:

Use of generative AI (genAI), including AI-assisted code completion, is prohibited. You
must write every element of the code yourself.

When you hand in your work, your zip file will contain no more than the following files:

hw2.pdf
MinMax.java
RPal.java
mydeque/LinkedListDeque.java.
mydeque/ArrayDeque.java

Collaboration

We interpret collaboration very liberally. You may work with other students. However, each student
must write up and hand in his or her assignment separately. Let us repeat: You need to write your
own code. You must not look at or copy someone else’s code. You need to write up answers to written
problems individually. The fact that you can recreate the solution from memory will be taken as proof
that you actually understood it, and you may actually be interviewed about your answers.

Be sure to indicate who you have worked with (refer to the hand-in instructions).

Logistics

We’re using a script to grade your submission before any human being looks at it. Sadly, the script is not
very forgiving. So, make sure you follow the instructions strictly. It’s a bad omen when the course staff
has to manually recover your file because the script doesn’t like it. Hence:

• Save your work in a file as described in the task description. This will be different for each task.
Do not save your file(s) with names other than specified.

• You’ll zip these files into a single file called a2.zip and you will upload this one zip file to Canvas
before the due date.

• Attempt to solve each task on your own first. After a day, if you still can’t solve a task, come to
office hours.

• Before handing anything in, you should thoroughly test everything you write.

• The course staff is here to help. We’ll steer you toward solutions. Catch us in real-life or online.

Homework 2 Data Struct.

Task 1: Min and Max (8 points)

For this task, save your work in MinMax.java

Consider the following problem: given an array of n numbers, we want to find both the minimum
and the maximum of these numbers. For such a problem, we often measure the cost in terms of the
number of comparisons made—that is, if we compare any two numbers from the input, that’s one
comparison.

As an example, the following algorithm requires n −1 comparisons:

// assume a.length > 0
int maxArray(int[] a) {

int maxSoFar = a[0];
for (int i=1;i<a.length;i++) {

if (a[i] > maxSoFar)
maxSoFar = a[i];

}
return maxSoFar;

}

This is because in an array a of length n, only a[1], a[2], . . . , a[n−1] are compared with our maxSoFar
in the if statement. Notice that a[0] is not involved in the if statement.

You can use this algorithm to the find the maximum value and an almost-identical algorithm to
find the minimum value. However, you’ll need 2n −2 comparisons (n −1 for max and another n −1 for
min). Only comparisons between input integers (either directly or indirectly) matter here, which is why
we don’t count comparisons made by i<a.length in the above example. Your goal in this problem is to
do better!

Subtask I: First, implement a function

public static double minMaxAverage(int[] numbers) {
// your code goes here
int myMin = ...;
int myMax = ...;
return (myMin + myMax)/2.0;

}

that takes in an array of integer numbers, finds the minimum and the maximum among these numbers,
and returns the average of the minimum and the maximum (as the code above shows). For full credit, if
input contains n numbers, your function must use fewer than 3n/2 comparisons.

Subtask II: As a comment block in your code file, make a logical argument—as close to an airtight
mathematical proof as possible—for why your code is indeed using strictly fewer than 3n/2 comparisons.

(Hint: Remember the maximum-number problem from class? What happens after one round in the
pairing-up algorithm?)

Task 2: Fibonacci Growth (8 points)

For this task, save your work in hw2.pdf

In class, our ArrayList implementation uses the array doubling trick, which doubles the capacity of
the array every time the array becomes full. Our analysis shows that starting with an array of capacity 1
with no data items initially, appending n data items ends up needing at most 2n copying steps.

2

Homework 2 Data Struct.

This problem involves a more fancy array growing scheme. To describe this new approach, recall
the Fibonacci sequence from Discrete Math, which is given by

Fn+2 = Fn+1 +Fn for n ≥ 0,

with F1 = F2 = 1. In our new scheme, the capacity of the underlying array will strictly follow the Fibonacci
sequence. Initially, the capacity is F2 = 1. When full, we grow the capacity to F3 = 2. When full again, we
grow the capacity to F4 = 3... then to F5 = 5, then to F6 = 8, and so on.

Amazingly this turns out to work quite well! You’ll prove a few facts about Fibonacci numbers and
apply them to analyze the total copying steps.

Subtask I Using mathematical induction, prove that for n ≥ 1,

1+F1 +F2 + . . .Fn = Fn+2

You’re expected to write a solid, rigorous proof based on the definition of Fibonacci numbers
(above).

Subtask II Prove, e.g., using direct proof that for n ≥ 1,

1

Fn

(
1+

n∑
k=1

Fk

)
≤ 3

Subtask III Suppose we start with no data items in our ArrayList. If we use the Fibonacci growth scheme and
add in n data items, give a detailed analysis of the total number of copy steps (like we did in class)
of this scheme. State your argument carefully. To simplify matters, you may wish to assume that
n = Fr +1 for some integer r ≥ 2.

Task 3: Palindromic and Recursive (8 points)

For this task, save your work in RPal.java

This problem will give you more practice in writing recursive programs, in the context of solving a
wacky problem. Let N > 0 be an integer. We say that a list X of positive integers is a partition of N if the
elements of X add up to exactly N . For example, each of [1,2,4] and [2,3,2] is a partition of 7.

As you might know already, a list is palindromic if it reads the same forward and backward. Of the
above example partitions, [1,2,4] is not palindromic, but [2,3,2] is palindromic. What’s more, we know
that if X is palindromic, then the first half (precisely the first len(X)/2 numbers) is the reverse of the
last half (precisely the last len(X)/2 numbers).

In this task, we’re interested in partitions that are palindromic recursively. A partition is recursively
palindromic if it is palindromic itself and its first half is recursively palindromic or empty. For example,
there are 6 recursively palindromic partitions of 7:

[7], [1,5,1], [2,3,2], [1,1,3,1,1], [3,1,3], [1,1,1,1,1,1,1]

The end goal of this problem is a working implementation of allRPals(int n) inside a public
class RPal. Specifically, the method allRPals(n) will return a list of all recursively palindromic
lists that sum to n. To boost performance, allRPalsmaintains a dictionary (a look-up table) on the
side: if it knows the answer already, then it returns that answer right away. Otherwise, it calls upon
computeAllRPals(int n) to generate the answer.

3

Homework 2 Data Struct.

Your task: Inside a public class RPal, implement a private method

private List<List<Integer>> computeAllRPals(int n)

that returns a list of all recursively palindromic lists that sum to n. In your implementation, you are
encouraged to call allRPals on smaller values of n. It is such recursion magic that will help you solve
this problem!

Performance Expectations: You will only be tested with 1 ≤ n ≤ 224. We expect your code to be
reasonably fast. For the largest n (i.e., n = 224), your program should not take more than 2.5 seconds.

(Hint: There are 9,042 partitions that are recursively palindromic for n = 99. Also, there are 355,906
partitions that are recursively palindromic for n = 224.)

Additional Challenge: If you feel like learning a new trick, how would you rewrite code inside allRPals
to achieve the same effect in just a single line using storageAllRPals.computeIfAbsent(...)? Read
the Java documentation to learn more about computeIfAbsent.

Task 4: Deque Using Doubly Linked Lists and Arrays (16 points)

For this task, save your work in mydeque/

In this problem, you will build implementations of a “double-ended queue” using both lists and
arrays. This extends the discussion of our linked list and array list from class. You can look at a more
detailed explanation in Chapter 5 of the book1.

(The next assignment will deal with repackaging it in a more Java proper way.)

The Deque API

The double ended queue is similar to the linked list and array list data structures that you have seen
in class. For a more authoritative definition (from cplusplus.com), a deque (usually pronounced like
“deck”) is an irregular acronym of double-ended queue. Double-ended queues are sequence containers
with dynamic sizes that can be expanded or contracted on both ends (either its front or its back).

For our needs, any deque implementation must have exactly the following operations:

// Adds an item of type T to the front of the deque.
public void addFirst(T item)

// Adds an item of type T to the back of the deque.
public void addLast(T item)

// Returns true if deque is empty, false otherwise.
public boolean isEmpty()

// Returns the number of items in the deque.
public int size()

// Returns a string showing the items in the deque from first to last,
// separated by a space.
public String toString()

// Removes and returns the item at the front of the deque.
// If no such item exists, returns null.

1https://introds.philinelabs.net

4

https://introds.philinelabs.net

Homework 2 Data Struct.

public T removeFirst()

// Removes and returns the item at the back of the deque.
// If no such item exists, returns null.
public T removeLast()

// Gets the item at the given index, where 0 is the front, 1 is the next item,
// and so forth. If no such item exists, returns null. Must not alter the deque!
public T get(int index)

Your class should accept any generic type (not just integers).

Linked List Deque

For this part, save your work in a file called LinkedListDeque.java.

Your task is to build a LinkedListDeque class, which will be (doubly) linked list based. Your
operations are subject to the following rules:

• .add and .remove family of operations must not involve any looping or recursion. Hence, a
single such operation must take “constant time.” That is to say, its execution time should not
depend on the size of the deque.

• .getmust use iteration, not recursion.

• .sizemust take constant time.

• You must not have extraneous/dangling nodes. Specifically, the amount of memory that your
program uses at any given time must be proportional to the number of items. For example, if you
add 1,000 items to the deque, and then remove 999 items, the resulting size should be more like a
deque with 1 item than 1,000. This means that you must not maintain references to items that are
no longer in the deque.

You will implement all the methods listed above in “The Deque API” section (above), together the
following constructors:

// Creates an empty linked list deque.
public LinkedListDeque()
// Creates a deep copy of other.
public LinkedListDeque(LinkedListDeque<T> other)

Note that creating a deep copy means that you create an entirely new LinkedListDeque, with the exact
same items. However, they are copies so they should be different objects. A good litmus test is, if you
change other, the “copied” LinkedListDeque should not change.

NOTE: You are not allowed to use Java’s built-in LinkedList data structure (or any data structure
from java.util.*) in your implementation.

NOTE #2: We’re providing a very simple simple sanity check in LinkedListDequeTest.java. For
your benefit, you must write more comprehensive tests. Passing the given tests does not necessarily
mean that you will pass our test or receive full credit.

NOTE #3: You may wish to implement a printDeque()method, which unlike toString, will print a
detailed view of your internal representation—make it print whatever you wish to see when implement-
ing/debugging the code. This is to help you debug and make sense of your deque structure. You are not
required to hand this in, but we recommend that you write one to help you work through the task.

5

Homework 2 Data Struct.

Array Deque

For this part, save your work in a file called ArrayDeque.java.

As another deque implementation, you’ll build an ArrayDeque class. This deque must use fixed-size
arrays as the core data structure. You’ll implement all the methods listed above in the Deque API. Other
than that, your operations are subject to the following rules:

• The .add and .remove family of operations must take constant time, except during resizing (grow
and perhaps shrink) operations.

• .get and .sizemust take constant time.

• The starting size of your array should be 8. The amount of memory that your program uses at any
given time must be proportional to the number of items. For example, if you add 10,000 items to
the deque, and then remove 9,999 items, you shouldn’t still be using an array of length 10,000ish.

• In addition, for arrays of length 16 or more, your array utilization (the ratio between array cells
that are used compared to the total array capacity) always be at least 25%. For smaller arrays, your
usage factor can be arbitrarily low.

You will also implement the following constructors:

// Creates an empty array deque.
public ArrayDeque()

// Creates a deep copy of other.
public ArrayDeque(ArrayDeque<T> other)

Like before, creating a deep copy means that creating an entirely new ArrayDeque, with the exact same
items as other. However, they should be different objects, i.e. if you change other, the new ArrayDeque
you created should not change as well. You may add any private helper classes or methods in the same
file as you see fit.

TIPS #1: The biggest challege for this part is, how to support the add and remove operations in
constant time (independent of the size)? We strongly recommend that you learn about the circular
buffer. Chapter 5.3 of the book explains this for queues and has some code examples. You might
also find more inspirations from Wikipedia (https://en.wikipedia.org/wiki/Circular_buffer).
That is, you’ll treat your array as circular. This means, for example, if your front pointer is at position
zero, and you addFirst, the front pointer should loop back around to the end of the array (so the new
front item in the deque will be the last item in the underlying array). Simiarly, if the rear end of the
deque is at the last slot of the array and you addLast, it should wrap around and stores the item at
position 0 (unless already full, in which case you’d resize).

TIPS #2: Consider not doing resizing at all until you know your code works without it. Resizing is a
performance optimization (but it is required for full credit). And when you do resizing, make sure you
think carefully about what happens if the data structure goes from empty, to some non-zero size (e.g. 4
items) back down to zero again, and then back to some non-zero size. Pro tip: 0×2 = 0, but it might not
be what you want.

TIPS #3: Chapter 4.3 of the book discusses some idea(s) for resizing both for growing and shrinking
the underlying array.

6

https://en.wikipedia.org/wiki/Circular_buffer

Homework 2 Data Struct.

TIPS #4: Like in the linked list version, you may wish to implement a printDeque()method, which
will print a detailed view of your internal representation—make it print whatever you wish to see when
implementing/debugging the code. This is to help you debug and make sense of your deque structure.
You are not required to hand this in, but we recommend that you write one to help you work through
the task.

7

	Min and Max (8 points)
	Fibonacci Growth (8 points)
	Palindromic and Recursive (8 points)
	Deque Using Doubly Linked Lists and Arrays (16 points)
	Linked List Deque
	Array Deque

